Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
2.
Nat Commun ; 15(1): 830, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280852

RESUMEN

Macroautophagy decreases with age, and this change is considered a hallmark of the aging process. It remains unknown whether mitophagy, the essential selective autophagic degradation of mitochondria, also decreases with age. In our analysis of mitophagy in multiple organs in the mito-QC reporter mouse, mitophagy is either increased or unchanged in old versus young mice. Transcriptomic analysis shows marked upregulation of the type I interferon response in the retina of old mice, which correlates with increased levels of cytosolic mtDNA and activation of the cGAS/STING pathway. Crucially, these same alterations are replicated in primary human fibroblasts from elderly donors. In old mice, pharmacological induction of mitophagy with urolithin A attenuates cGAS/STING activation and ameliorates deterioration of neurological function. These findings point to mitophagy induction as a strategy to decrease age-associated inflammation and increase healthspan.


Asunto(s)
ADN Mitocondrial , Mitofagia , Humanos , Ratones , Animales , Anciano , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Inflamación/genética , Inflamación/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Envejecimiento/genética
4.
Sci Rep ; 12(1): 5938, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396524

RESUMEN

Vascular smooth muscle cell (VSMC) proliferation is essential for arteriogenesis to restore blood flow after artery occlusion, but the mechanisms underlying this response remain unclear. Based on our previous findings showing increased VSMC proliferation in the neonatal aorta of mice lacking the protease MT4-MMP, we aimed at discovering new players in this process. We demonstrate that MT4-MMP absence boosted VSMC proliferation in vitro in response to PDGF-BB in a cell-autonomous manner through enhanced p38 MAPK activity. Increased phospho-p38 in basal MT4-MMP-null VSMCs augmented the rate of mitochondrial degradation by promoting mitochondrial morphological changes through the co-activator PGC1α as demonstrated in PGC1α-/- VSMCs. We tested the in vivo implications of this pathway in a novel conditional mouse line for selective MT4-MMP deletion in VSMCs and in mice pre-treated with the p38 MAPK activator anisomycin. Priming of p38 MAPK activity in vivo by the absence of the protease MT4-MMP or by anisomycin treatment led to enhanced arteriogenesis and improved flow recovery after femoral artery occlusion. These findings may open new therapeutic opportunities for peripheral vascular diseases.


Asunto(s)
Metaloproteinasa 17 de la Matriz , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Anisomicina , Proliferación Celular/fisiología , Células Cultivadas , Metaloproteinasa 17 de la Matriz/metabolismo , Ratones , Dinámicas Mitocondriales , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Nucleic Acids Res ; 49(22): 12757-12768, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34850165

RESUMEN

Methylation on CpG residues is one of the most important epigenetic modifications of nuclear DNA, regulating gene expression. Methylation of mitochondrial DNA (mtDNA) has been studied using whole genome bisulfite sequencing (WGBS), but recent evidence has uncovered technical issues which introduce a potential bias during methylation quantification. Here, we validate the technical concerns of WGBS, and develop and assess the accuracy of a new protocol for mtDNA nucleotide variant-specific methylation using single-molecule Oxford Nanopore Sequencing (ONS). Our approach circumvents confounders by enriching for full-length molecules over nuclear DNA. Variant calling analysis against showed that 99.5% of homoplasmic mtDNA variants can be reliably identified providing there is adequate sequencing depth. We show that some of the mtDNA methylation signal detected by ONS is due to sequence-specific false positives introduced by the technique. The residual signal was observed across several human primary and cancer cell lines and multiple human tissues, but was always below the error threshold modelled using negative controls. We conclude that there is no evidence for CpG methylation in human mtDNA, thus resolving previous controversies. Additionally, we developed a reliable protocol to study epigenetic modifications of mtDNA at single-molecule and single-base resolution, with potential applications beyond CpG methylation.


Asunto(s)
Islas de CpG , Metilación de ADN , ADN Mitocondrial/metabolismo , Secuenciación de Nanoporos/métodos , Línea Celular , Línea Celular Tumoral , ADN Mitocondrial/química , Variación Genética , Humanos , Secuenciación Completa del Genoma
6.
Nat Med ; 27(9): 1564-1575, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34426706

RESUMEN

Mitochondrial DNA (mtDNA) variants influence the risk of late-onset human diseases, but the reasons for this are poorly understood. Undertaking a hypothesis-free analysis of 5,689 blood-derived biomarkers with mtDNA variants in 16,220 healthy donors, here we show that variants defining mtDNA haplogroups Uk and H4 modulate the level of circulating N-formylmethionine (fMet), which initiates mitochondrial protein translation. In human cytoplasmic hybrid (cybrid) lines, fMet modulated both mitochondrial and cytosolic proteins on multiple levels, through transcription, post-translational modification and proteolysis by an N-degron pathway, abolishing known differences between mtDNA haplogroups. In a further 11,966 individuals, fMet levels contributed to all-cause mortality and the disease risk of several common cardiovascular disorders. Together, these findings indicate that fMet plays a key role in common age-related disease through pleiotropic effects on cell proteostasis.


Asunto(s)
Biomarcadores/sangre , Enfermedades Cardiovasculares/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Edad de Inicio , Donantes de Sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/epidemiología , ADN Mitocondrial/sangre , Femenino , Estudios de Seguimiento , Haplotipos/genética , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/patología , N-Formilmetionina/metabolismo , Proteostasis , Factores de Riesgo , Reino Unido/epidemiología
7.
Commun Biol ; 4(1): 584, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990696

RESUMEN

Most humans carry a mixed population of mitochondrial DNA (mtDNA heteroplasmy) affecting ~1-2% of molecules, but rapid percentage shifts occur over one generation leading to severe mitochondrial diseases. A decrease in the amount of mtDNA within the developing female germ line appears to play a role, but other sub-cellular mechanisms have been implicated. Establishing an in vitro model of early mammalian germ cell development from embryonic stem cells, here we show that the reduction of mtDNA content is modulated by oxygen and reaches a nadir immediately before germ cell specification. The observed genetic bottleneck was accompanied by a decrease in mtDNA replicating foci and the segregation of heteroplasmy, which were both abolished at higher oxygen levels. Thus, differences in oxygen tension occurring during early development likely modulate the amount of mtDNA, facilitating mtDNA segregation and contributing to tissue-specific mutation loads.


Asunto(s)
Linaje de la Célula , ADN Mitocondrial/química , ADN Mitocondrial/genética , Células Madre Embrionarias/metabolismo , Mitocondrias/genética , Mutación , Oxígeno/fisiología , Animales , Células Madre Embrionarias/citología , Femenino , Células Germinativas/citología , Células Germinativas/metabolismo , Ratones , Ratones Endogámicos C57BL , Selección Genética
8.
Nat Genet ; 53(7): 982-993, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34002094

RESUMEN

Mitochondrial DNA (mtDNA) variation in common diseases has been underexplored, partly due to a lack of genotype calling and quality-control procedures. Developing an at-scale workflow for mtDNA variant analyses, we show correlations between nuclear and mitochondrial genomic structures within subpopulations of Great Britain and establish a UK Biobank reference atlas of mtDNA-phenotype associations. A total of 260 mtDNA-phenotype associations were new (P < 1 × 10-5), including rs2853822 /m.8655 C>T (MT-ATP6) with type 2 diabetes, rs878966690 /m.13117 A>G (MT-ND5) with multiple sclerosis, 6 mtDNA associations with adult height, 24 mtDNA associations with 2 liver biomarkers and 16 mtDNA associations with parameters of renal function. Rare-variant gene-based tests implicated complex I genes modulating mean corpuscular volume and mean corpuscular hemoglobin. Seven traits had both rare and common mtDNA associations, where rare variants tended to have larger effects than common variants. Our work illustrates the value of studying mtDNA variants in common complex diseases and lays foundations for future large-scale mtDNA association studies.


Asunto(s)
Bancos de Muestras Biológicas , ADN Mitocondrial , Genes Mitocondriales , Estudios de Asociación Genética , Genotipo , Mitocondrias/genética , Fenotipo , Alelos , Humanos , Reino Unido
9.
EMBO J ; 39(23): e105364, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33128823

RESUMEN

Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6-months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation; however, only ~ 1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. Our transcriptomic and proteomic analysis of patient muscle suggests a stepwise mechanism where first, the integrated stress response associated with increased FGF21 and GDF15 expression enhances the metabolism modulated by serine biosynthesis, one carbon metabolism, TCA lipid oxidation and amino acid availability, while in the second step mTOR activation leads to increased mitochondrial biogenesis. Our data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease.


Asunto(s)
Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Adolescente , Línea Celular , ADN Mitocondrial/genética , Femenino , Expresión Génica , Humanos , Lactante , Masculino , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Linaje , Proteómica , Músculo Cuádriceps/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
10.
EMBO Mol Med ; 12(3): e11589, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32107855

RESUMEN

Mitochondrial disorders affect 1/5,000 and have no cure. Inducing mitochondrial biogenesis with bezafibrate improves mitochondrial function in animal models, but there are no comparable human studies. We performed an open-label observational experimental medicine study of six patients with mitochondrial myopathy caused by the m.3243A>G MTTL1 mutation. Our primary aim was to determine the effects of bezafibrate on mitochondrial metabolism, whilst providing preliminary evidence of safety and efficacy using biomarkers. The participants received 600-1,200 mg bezafibrate daily for 12 weeks. There were no clinically significant adverse events, and liver function was not affected. We detected a reduction in the number of complex IV-immunodeficient muscle fibres and improved cardiac function. However, this was accompanied by an increase in serum biomarkers of mitochondrial disease, including fibroblast growth factor 21 (FGF-21), growth and differentiation factor 15 (GDF-15), plus dysregulation of fatty acid and amino acid metabolism. Thus, although potentially beneficial in short term, inducing mitochondrial biogenesis with bezafibrate altered the metabolomic signature of mitochondrial disease, raising concerns about long-term sequelae.


Asunto(s)
Bezafibrato/farmacología , Mitocondrias/metabolismo , Miopatías Mitocondriales/tratamiento farmacológico , Humanos , Miopatías Mitocondriales/metabolismo , Biogénesis de Organelos
11.
Nat Commun ; 10(1): 3280, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337756

RESUMEN

Somatic mutations in the mitochondrial genome (mtDNA) have been linked to multiple disease conditions and to ageing itself. In Drosophila, knock-in of a proofreading deficient mtDNA polymerase (POLG) generates high levels of somatic point mutations and also small indels, but surprisingly limited impact on organismal longevity or fitness. Here we describe a new mtDNA mutator model based on a mitochondrially-targeted cytidine deaminase, APOBEC1. mito-APOBEC1 acts as a potent mutagen which exclusively induces C:G>T:A transitions with no indels or mtDNA depletion. In these flies, the presence of multiple non-synonymous substitutions, even at modest heteroplasmy, disrupts mitochondrial function and dramatically impacts organismal fitness. A detailed analysis of the mutation profile in the POLG and mito-APOBEC1 models reveals that mutation type (quality) rather than quantity is a critical factor in impacting organismal fitness. The specificity for transition mutations and the severe phenotypes make mito-APOBEC1 an excellent mtDNA mutator model for ageing research.


Asunto(s)
Desaminasas APOBEC-1/fisiología , ADN Mitocondrial/química , Drosophila/genética , Desaminasas APOBEC-1/genética , Desaminasas APOBEC-1/metabolismo , Animales , Drosophila/fisiología , Mitocondrias/metabolismo , Mitocondrias/fisiología , Modelos Genéticos , Mutación , Organismos Modificados Genéticamente
12.
Front Immunol ; 9: 2217, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319656

RESUMEN

In order to limit the adverse effects of excessive inflammation, anti-inflammatory responses are stimulated at an early stage of an infection, but during sepsis these can lead to deactivation of immune cells including monocytes. In addition, there is emerging evidence that the up-regulation of mitochondrial quality control mechanisms, including mitochondrial biogenesis and mitophagy, is important during the recovery from sepsis and inflammation. We aimed to describe the relationship between the compensatory immune and mitochondrial responses that are triggered following exposure to an inflammatory stimulus in human monocytic cells. Incubation with lipopolysaccharide resulted in a change in the immune phenotype of THP-1 cells consistent with the induction of endotoxin tolerance, similar to that seen in deactivated septic monocytes. After exposure to LPS there was also early evidence of oxidative stress, which resolved in association with the induction of antioxidant defenses and the stimulation of mitochondrial degradation through mitophagy. This was compensated by a parallel up-regulation of mitochondrial biogenesis that resulted in an overall increase in mitochondrial respiratory activity. These observations improve our understanding of the normal homeostatic responses that limit the adverse cellular effects of unregulated inflammation, and which may become ineffective when an infection causes sepsis.


Asunto(s)
Mitocondrias/inmunología , Mitofagia/inmunología , Monocitos/inmunología , Biogénesis de Organelos , Endotoxinas/inmunología , Humanos , Tolerancia Inmunológica , Lipopolisacáridos/inmunología , Mitocondrias/metabolismo , Monocitos/citología , Estrés Oxidativo/inmunología , Células THP-1
13.
Front Neurosci ; 12: 682, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30369864

RESUMEN

mtDNA is transmitted through the maternal line and its sequence variability, which is population specific, is assumed to be phenotypically neutral. However, several studies have shown associations between the variants defining some genetic backgrounds and the susceptibility to several pathogenic phenotypes, including neurodegenerative diseases. Many of these studies have found that some of these variants impact many of these phenotypes, including the ones defining the Caucasian haplogroups H, J, and Uk, while others, such as the ones defining the T haplogroup, have phenotype specific associations. In this review, we will focus on those that have shown a pleiotropic effect in population studies in neurological diseases. We will also explore their bioenergetic and genomic characteristics in order to provide an insight into the role of these variants in disease. Given the importance of mitochondrial population variants in neurodegenerative diseases a deeper analysis of their effects might unravel new mechanisms of disease and help design new strategies for successful treatments.

14.
PLoS Genet ; 14(5): e1007364, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29727451

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1007126.].

15.
Brain ; 141(1): 55-62, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29182774

RESUMEN

The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease.


Asunto(s)
Proteínas de Unión al ADN/genética , Salud de la Familia , Pérdida Auditiva/genética , Proteínas Mitocondriales/genética , Mutación/genética , Adolescente , Niño , Preescolar , Análisis Mutacional de ADN , Complejo II de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Pérdida Auditiva/complicaciones , Heterocigoto , Humanos , Lactante , Masculino , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Músculo Esquelético/ultraestructura , Adulto Joven
16.
PLoS Genet ; 13(12): e1007126, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29253894

RESUMEN

Inherited mitochondrial DNA (mtDNA) mutations have emerged as a common cause of human disease, with mutations occurring multiple times in the world population. The clinical presentation of three pathogenic mtDNA mutations is strongly associated with a background mtDNA haplogroup, but it is not clear whether this is limited to a handful of examples or is a more general phenomenon. To address this, we determined the characteristics of 30,506 mtDNA sequences sampled globally. After performing several quality control steps, we ascribed an established pathogenicity score to the major alleles for each sequence. The mean pathogenicity score for known disease-causing mutations was significantly different between mtDNA macro-haplogroups. Several mutations were observed across all haplogroup backgrounds, whereas others were only observed on specific clades. In some instances this reflected a founder effect, but in others, the mutation recurred but only within the same phylogenetic cluster. Sequence diversity estimates showed that disease-causing mutations were more frequent on young sequences, and genomes with two or more disease-causing mutations were more common than expected by chance. These findings implicate the mtDNA background more generally in recurrent mutation events that have been purified through natural selection in older populations. This provides an explanation for the low frequency of mtDNA disease reported in specific ethnic groups.


Asunto(s)
ADN Mitocondrial/genética , Mutación , Atrofia Óptica Hereditaria de Leber/genética , Alelos , Secuencia de Bases , Bases de Datos Genéticas , Efecto Fundador , Frecuencia de los Genes , Variación Genética , Haplotipos , Humanos , Mitocondrias/genética , Filogenia
18.
PLoS Genet ; 13(3): e1006620, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28267784

RESUMEN

Tubulointerstitial kidney disease is an important cause of progressive renal failure whose aetiology is incompletely understood. We analysed a large pedigree with maternally inherited tubulointerstitial kidney disease and identified a homoplasmic substitution in the control region of the mitochondrial genome (m.547A>T). While mutations in mtDNA coding sequence are a well recognised cause of disease affecting multiple organs, mutations in the control region have never been shown to cause disease. Strikingly, our patients did not have classical features of mitochondrial disease. Patient fibroblasts showed reduced levels of mitochondrial tRNAPhe, tRNALeu1 and reduced mitochondrial protein translation and respiration. Mitochondrial transfer demonstrated mitochondrial transmission of the defect and in vitro assays showed reduced activity of the heavy strand promoter. We also identified further kindreds with the same phenotype carrying a homoplasmic mutation in mitochondrial tRNAPhe (m.616T>C). Thus mutations in mitochondrial DNA can cause maternally inherited renal disease, likely mediated through reduced function of mitochondrial tRNAPhe.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Renales/genética , Túbulos Renales/patología , Mutación , Acetilglucosaminidasa/orina , Biopsia , Femenino , Fibroblastos/metabolismo , Ligamiento Genético , Humanos , Leucina/química , Masculino , Mitocondrias/metabolismo , Consumo de Oxígeno , Linaje , Fenotipo , Fenilalanina/química , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Músculo Cuádriceps/patología , ARN de Transferencia/genética
19.
J Neuromuscul Dis ; 3(3): 363-379, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27854233

RESUMEN

BACKGROUND: Mitochondrial encephalomyopathies are severe, relentlessly progressive conditions and there are very few effective therapies available to date. We have previously suggested that in two rare forms of reversible mitochondrial disease (reversible infantile respiratory chain deficiency and reversible infantile hepatopathy) supplementation with L-cysteine can improve mitochondrial protein synthesis, since cysteine is required for the 2-thiomodification of mitochondrial tRNAs. OBJECTIVES: We studied whether supplementation with L-cysteine or N-acetyl-cysteine (NAC) results in any improvement of the mitochondrial function in vitro in fibroblasts of patients with different genetic forms of abnormal mitochondrial translation. METHODS: We studied in vitro in fibroblasts of patients carrying the common m.3243A>G and m.8344A>G mutations or autosomal recessive mutations in genes affecting mitochondrial translation, whether L-cysteine or N-acetyl-cysteine supplementation have an effect on mitochondrial respiratory chain function. RESULTS: Here we show that supplementation with L-cysteine, but not with N-acetyl-cysteine partially rescues the mitochondrial translation defect in vitro in fibroblasts of patients carrying the m.3243A>G and m.8344A>G mutations. In contrast, N-acetyl-cysteine had a beneficial effect on mitochondrial translation in TRMU and MTO1 deficient fibroblasts. CONCLUSIONS: Our results suggest that L-cysteine or N-acetyl-cysteine supplementation may be a potential treatment for selected subgroups of patients with mitochondrial translation deficiencies. Further studies are needed to explore the full potential of cysteine supplementation as a treatment for patients with mitochondrial disease.


Asunto(s)
Acetilcisteína/farmacología , Cisteína/farmacología , Fibroblastos/efectos de los fármacos , Síndrome MELAS/metabolismo , Síndrome MERRF/metabolismo , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Portadoras/genética , Ciclooxigenasa 2/genética , Suplementos Dietéticos , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Mutación , Proteínas de Neoplasias/genética , Consumo de Oxígeno/efectos de los fármacos , Proteínas de Unión al ARN , ARNt Metiltransferasas/genética
20.
J Cell Biol ; 215(2): 187-202, 2016 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-27810911

RESUMEN

Human induced pluripotent stem cell (hiPSC) utility is limited by variations in the ability of these cells to undergo lineage-specific differentiation. We have undertaken a transcriptional comparison of human embryonic stem cell (hESC) lines and hiPSC lines and have shown that hiPSCs are inferior in their ability to undergo neuroectodermal differentiation. Among the differentially expressed candidates between hESCs and hiPSCs, we identified a mitochondrial protein, CHCHD2, whose expression seems to correlate with neuroectodermal differentiation potential of pluripotent stem cells. We provide evidence that hiPSC variability with respect to CHCHD2 expression and differentiation potential is caused by clonal variation during the reprogramming process and that CHCHD2 primes neuroectodermal differentiation of hESCs and hiPSCs by binding and sequestering SMAD4 to the mitochondria, resulting in suppression of the activity of the TGFß signaling pathway. Using CHCHD2 as a marker for assessing and comparing the hiPSC clonal and/or line differentiation potential provides a tool for large scale differentiation and hiPSC banking studies.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Pluripotentes Inducidas/citología , Proteínas Mitocondriales/metabolismo , Placa Neural/citología , Factores de Transcripción/metabolismo , Apoptosis/genética , Secuencia de Bases , Línea Celular , Movimiento Celular/genética , Supervivencia Celular/genética , Reprogramación Celular/genética , Proteínas de Unión al ADN , Perfilación de la Expresión Génica , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...